BAYESIAN IDENTIFICATION OF PYROLYSIS MODEL PARAMETERS FOR THERMAL PROTECTION MATERIALS USING AN ADAPTIVE GRADIENT-INFORMED SAMPLING ALGORITHM WITH APPLICATION TO A MARS ATMOSPHERIC ENTRY
نویسندگان
چکیده
For space missions involving atmospheric entry, a thermal protection system is essential to shield the spacecraft and its payload from severe aerothermal loads. Carbon/phenolic composite materials have gained renewed interest serve as ablative (TPMs). New experimental data relevant pyrolytic decomposition of phenolic resin used in such carbon/phenolic TPMs recently been published literature. In this paper, we infer these new an uncertainty-quantified pyrolysis model. We adopt Bayesian probabilistic approach account for uncertainties model identification. use approximate likelihood function weighted distance between predictions time-dependent data. To sample posterior, gradient-informed Markov chain Monte Carlo method, namely, method based on Ito stochastic differential equation, with adaptive selection numerical parameters. select mechanisms be represented model, proceed by progressively increasing complexity until satisfactory fit ultimately obtained. The thus obtained involves six reactions has 48 demonstrate identified simulation heat-shield surface recession Martian entry.
منابع مشابه
an application of equilibrium model for crude oil tanker ships insurance futures in iran
با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...
Adaptive Bayesian Sampling with Application to ‘Bubbles’
1.3 Stimulus generation process. Upper panel shows the face decomposed into five independent scales. Middle panel: bubbles sample the information space at random locations, allowing overlapping. Bottom panel shows how bubbles are applied to the appropriate scales to produce a sub-sample of the face List of Figures 6 3.2 Cumulative distribution function (c.d.f.) of Beta-distribution is used as a...
متن کاملan application of fuzzy logic for car insurance underwriting
در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...
AN ADAPTIVE IMPORTANCE SAMPLING-BASED ALGORITHM USING THE FIRST-ORDER METHOD FOR STRUCTURAL RELIABILITY
Monte Carlo simulation (MCS) is a useful tool for computation of probability of failure in reliability analysis. However, the large number of samples, often required for acceptable accuracy, makes it time-consuming. Importance sampling is a method on the basis of MCS which has been proposed to reduce the computational time of MCS. In this paper, a new adaptive importance sampling-based algorith...
متن کاملAn adaptive gradient sampling algorithm for non-smooth optimization
We present an algorithm for the minimization of f : Rn → R, assumed to be locally Lipschitz and continuously differentiable in an open dense subset D of Rn. The objective f may be nonsmooth and/or nonconvex. The method is based on the gradient sampling algorithm (GS) of Burke, Lewis, and Overton [SIAM J. Optim., 15 (2005), pp. 751-779]. It differs, however, from previously proposed versions of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Uncertainty Quantification
سال: 2023
ISSN: ['2152-5080', '2152-5099']
DOI: https://doi.org/10.1615/int.j.uncertaintyquantification.2022042928